Monday, January 12, 2015

Shotgun Ballistics

Shotgun Ballistics This article answers a reader’s question and discusses shotgun ballistics.

“What about Shotguns and Shotgun Ballistics? The entire Ballistics Series was great and it was the first time that the science behind shooting was explained in a way that made sense. I’m considering a shotgun for home defense, so could you cover Shotgun Ballistics in one of your upcoming articles? Thank you.” – Brian in Temecula

Brian, thank you for the e-mail and for the opportunity to give the venerable shotgun the attention it deserves. Although there are many similarities between shotgun ballistics and rifle/pistol ballistics, the differences are significant enough to focus solely on the shotgun. What makes shotguns unique among other firearms is the wide variety of projectiles that can be fired from the same platform. This includes everything from a slug and a sabot round through buck shot, bird shot, and a number of less-than-lethal options. Since slugs and sabot projectiles are single solid projectiles, their ballistic characteristics are very similar to the pistol and rifle projectiles covered in the Ballistics Series. Therefore, I will focus the majority of this article on buckshot and birdshot.

Internal Ballistics

shotgun shell case cutaway If you recall, our discussion on internal ballistics focused on the characteristics of the firearm, the cartridge, and the initial actions in the firing sequence that occur within the confines of the firearm. For this discussion, we’ll start with the cartridges, known as shot shells, and their components :

Primer – similar to rifles and pistols, the shot shell primer is a small metal cup that contains an explosive mixture that, when struck by the firing pin, sends a small flame through the base to ignite the propellant.

Base – brass, steel, or aluminum, the base is a multi-function element that houses the primer, binds the hull, and provides rigidity to interact with the extractor and ejector to ensure firearm function.

Hull – polymer, plastic, or paper, the hull ensures the proper functioning of the shot shell by holding the individual components together behind a crimp. Once the propellant is ignited, the hull expands to the diameter of the chamber and ensures a sufficient gas seal to send the wad and shot forward.

Propellant – similar to rifles and pistols, the propellant, once ignited, produces the gas expansion required to fire the projectile(s).

Wad – Different from rifles and pistols, a shot shell requires a wad in order to: (1) provide a small internal compartment to contain the propellant and keep it separate from the shot or projectile; and (2) provide a buffer that absorbs shock and minimizes deformation of the shot as it accelerates from rest to initial velocity.

Shot – From a collection of very small to large lead or steel pellets through slugs, sabots, or less-than-lethal projectiles, the shot is a single or group of projectiles delivered from the firearm to the target.

Gauge and Chamber

 

shotgun-gauge Whereas rifles and pistols are designated by the caliber of the projectiles they fire, shotguns are designated by the shotshell gauge. While most shooters have heard the common gauges of 12, 20, 28, and .410, few know the origin of the term. A shotgun’s gauge is determined by the number of round projectiles of equal diameter that can be subdivided from one pound of lead. For example, a 12-gauge barrel was designed around the fact that one pound of lead could be divided into twelve 0.727-inch lead balls. The same methodology is true from the 4 gauge down to the 28 gauge. .410 is the exception to the rule since it was simply a determination of the diameter of the bore in fractions of an inch.

While the gauge determines the inside diameter of the bore, the chamber designation determines the maximum length of the cartridge. Most shotguns can chamber a cartridge of either 2-3/4 inches or 3 inches while others can handle a 3-1.2 inch shell. Together, the gauge and chamber determine the maximum volume of shot or size of the projectile.

Shot

 

Whether lead, steel, or another material, the shot is a volume of small diameter round projectiles. In the preceding section, we discussed how the gauge and chamber determine the maximum volume of shot a cartridge can contain, the diameter of the shot itself will determine how many projectiles can fill that volume. Ranging from #12 shot (at 0.05 inches per ball) to OOO, or triple-ought (at .36 inches per ball), each have their own application. Skeet shooters engaging fast-crossing targets at close range desire a large quantity of small pellets, so they typically choose a #9 shot. Conversely, trapshooters engage targets moving quickly away from the shooting position, so they choose either a #8 or a #7.5 shot with the requisite momentum to catch-up to and break the clay pigeon. The smaller shot is ideal for breaking clay pigeons or taking-down game birds without destroying their feathers or meat, but the small shot retains insufficient energy to take-down a larger game animal or subdue a felon. In these cases, the larger buckshot, slug, or sabot is chosen.

Internal/External Ballistics – Smooth-Bore, Forcing Cone, and Chokes

 

Break-open, pump, and semi-automatic shotguns share the same cycle of operations and functions as the rifles and pistols I covered in Internal Ballistics – Part I. Very briefly, as the firing pin strikes the primer, a small flame is sent through the base and into the hull, which ignites the propellant. The resulting rapid gas expansion pushes the plastic hull against the inside of the chamber causing a seal from which the wad and its contents can only push forward down the bore.

Shotguns, however, differ from pistols in rifles in three main areas: smooth-bore, forcing cone, and chokes. While some shotguns are manufactured with rifled bores, many more are manufactured with smooth bores. The rifled bore is designed primarily for the rifled slug and sabot rounds and produces the gyroscopic stability required to send the projectile to the intended target. Technically, birdshot and buckshot can be fired through a rifled bore, but the rifling will “spin” the plastic wad which will translate the centrifugal force to the shot and open the shot column into a “V,” leaving a large gap in the center of the shot spread. Therefore, birdshot and buckshot are meant to be fired through smooth-bores.

Since the chamber is larger than the bore, something needs to gradually “step-down” from the hull diameter to the inside diameter of the bore. This is the forcing cone. The length and shape of the forcing cone will affect the efficiency of the wad and shot traversing the length of the barrel. Too-short of a forcing cone can exert undue stress on the lead shot and cause deformation while too-long of a forcing cone may not generate enough pressure for sufficient initial velocity.

Once the wad and the shot exit the barrel, the volume of shot expands in both length and width. The size of the shot, shape of the forcing cone, and constriction provided by the choke work together and determine how much the shot column spreads as it travels down-range. As this shot column passes through a two-dimensional plane at any distance, it leaves a pattern. The following graphic demonstrates the spread of the shot pattern at different distances.... Read more

Posted by Howard Hall

No comments:

Post a Comment